Mark and sweep

Review

 Memory manager: Allocation and
revocation

 Revocation linked to allocation

« Scan heap for reachable objects, sweep to
free unreachable ones

Review

« Mutator yields
* Collector decides when to collect
* Collector controls allocation

» “Stop the world": Collector in complete
control of heap

Marking

&

4)
Root

\

J

)

Obj

H

« Graph reachability
problem
* Roots are not objects!

* Roots aren’t marked
 Roots don't have
neaders

Obj

ODbj

)
Obj

Obj

The mark algOrithm (one version)

markPhase () :
worklist := new Queue
foreach loc in roots:

ref := *loc Root task
if ref != NULL and !markegtzg?TT‘~.___..Verycﬂﬁérent
mark (ref)

worklist.push (ref) from object

markWorklist () task!
markWorklist () : /
while (ref := worklist.pop()):
foreach loc in ref->header.descriptor->ptrs:
child := *(ref+loc)
1f child !'= NULL and !'marked (ref) :

mark (ref)
worklist.push (child)

Scan order

* Presented algorithm:

 Follows root pointers to completion before
moving on to another root pointer

* |s breadth-first for heap objects

\

This should make you angry!

Scan order

« Objects often form cliques
» Object cliques:
 Are allocated around the same time

» Mostly point at each other

 Should be allocated near each other

Scan order: Address-first?

« We could sort worklist by ref address

 Time to sort usually overwhelms saved
time scanning

Mark bit

« Without mark bit, graph reachability trace
may never end!

» Mark bit can be in header...
 Or, can keep a side table
* |f in header: Where to put the bit?

Mark bit

struct ObjectHeader {
struct GCTypelInfo *typelnfo;

char markBiti e How much larger are objects

i when this is added?

void mark (struct ObjectHeader *hdr) {
hdr->markBit = 1;
}

int i1sMarked(struct ObjectHeader *hdr) {
return hdr->markRit;

J

10

Bit-sneaky

« There are three'! wasted bits in our header

0[0]0|0]0(0|0|0]0|0[0|0|0]0|O|O]O(0]0f0O]0|O]O]O(0]0f0O]0]O(O]0(0]0|1|O]1(1]2{1|21|O|1|0|O]|O(O]1]|1{1]Of1|0|O|O|1|1]1(1]|Of1]|O|O]O]|O

e — S —————————————————— >
Pool address Object address t

Always 0!

» All pointers have this extra space!

1'0On 32-bit systems, two

Bit-sneaky C

struct ObjectHeader {
struct GCTypelInfo *typelnfo;

by

void mark (struct ObjectHeader *hdr) {
hdr->typeInfo = (struct GCTypelInfo *)
((size t) hdr->typelInfo | 1);
| —

int i1sMarked(struct ObjectHeader *hdr)
return (size t) hdr->typelInfo & 1;

J

{

12

Worth it?

* |f objects are small (hint: they are), every
word counts

« Huge complication: Type info pointer is no
longer valid!

» Must restore type info pointer later

Sweep

« Heap parsability is crucial!
» Consider heap parsability with:

« Bump-pointer allocation
e Free-list overallocation

* Free object type/header

Sweep algorithm

sweep () : | |
freelList := new FreelList <= Discard old freelist

foreach ref in heap: 1 \yst walk entire heap!
1f marked(ref) :

unmark (ref) — € Perfect chance to unmark

else:
ref *:= new FreeObject

f List. h f
reelist.push(ret) Type of objects

change in sweep

15

-

16

17

h|OIh|O[h| OO OIOIOROhO

]

19

20

21

22

Performance

 Mark:; O(L)
* Sweer’ \O
\’o(,a\\?!é-sweep: O(H)

Bit-swapping

» Can avoid cost of clearing bits by swapping
meaning:

* |n first collection, 0 = unreachable, 1 = reachable,

* in second collection, 1 = unreachable, O =
reachable, etc.

« Must remember to allocate with correct
mark!

Improving mark

» Depth-first vs. breadth-first vs. address-
ordered

 Bitmapped mark

 Other tricks beyond scope of course

Bitmapped mark

« Connected to bitmap free-list:
 Bitmap at beginning of pool

Clear bitmap before marking

One bit per word

If object is alive, mark its words in bitmap
« Use as bitmap free-list during allocation

« With bit-swapping, no sweep

lmproving sweep

* |t's not so bad (locality!)
 Improve by:
» Even better cache behavior,
« concurrent/lazy sweeping, or

* O(1) sweep

Sweep cache behavior

» Stride of sweep always object size
« CPUs prefetch
» Object size varies

» Segregated blocks: Object size constant,
perfect prefetch

Concurrent sweep

« Mutator will never touch unmarked
objects

» Sweep in a separate thread

« Must be careful about allocation/sweep
races!

Lazy sweep

« Sweep during allocation

* |f free-list is empty, sweep until sufficient
free object is found

* [nsufficient objects added to free-list

Lazy sweep

h|OhlOh OO OIOIOROhO

1

Sweep pointer maintained per pool

When allocating, if free-list is empty or has no suitable objects...

Lazy sweep

Sweep until a suitable object is found

This object is returned to mutator

Lazy sweep

hO[hOIhOIh| F IhlOIOINOIOO

]

Unsuitable objects added to free-list during allocation

Lazy sweep

hO[hOIhOIh| F IhlOIOINOIOO

|

... until a suitable object is found.

This object is returned to mutator

Lazy sweep performance

» Throughput
» Responsiveness

» Latency

O(1) sweep

« Walking the heap is O(H)

» Appending lists is O(1)

» Keep “allocated list”

» Mark by moving to new list

When to GC
« Must GC if:

* Free-list is empty,
* No free space in any pool, and

» OS cannot give any more space.
» Should GC far more often than that

When to GC

 Typical strategy is to GC when:

* An allocation is made that cannot be
satisfied without requesting a new pool, or

* traversing free-list is becoming expensive.

» Requires active monitoring

Free-list monitoring

« Depends on free-list type

 For, e.g., first-fits list, count number of
hops during allocation

» Frequent many-hop allocations =
fragmentation

When to GC

* |f every full pool leads to GC, no new
pools allocated

» Must allocate new pools when collection
leaves pools mostly full

Pool space

» To gauge used pool space, simply sum
size of all reachable objects

« Due to fragmentation, free pool space is
not a perfect indicator of available space

« Might use free-list monitoring too

Summary

« Mark-and-sweep is exactly how it sounds

» Sweep seems expensive but has great
locality

« Optimizations can reduce or eliminate
sweep

Moving GC

Review

» Allocator owns pools
» Compiler controls roots

« Compiler informs allocator of roots,
object types

 Trace references to find living objects

Mark and sweep

 Very natural map to reachability
* TWO passes

* Prone to fragmentation

Semispace copying

Semispace copying

* “fromspace” and “tospace”

 After moving from fromspace to tospace,
no reachable objects in fromspace

« Swap from/to space for new collection

* No sweep, free-lists, fragmentation

Implications

* SNt moving objects expensive?
e | <<< H

« Must update all references

* Must never copy twice

« Can only use half of heap (allocate in
tospace)

collect () :
fromspace, tospace := tospace, fromspace

worklist := new Queue

foreach loc in roots:
process (loc)

while (ref := worklist.pop()):
scan (ref)

scan (ref) :
foreach loc in ref->header.descriptor->ptrs:
process (ref+loc)

process (loc) :

fromRef := *loc
i1f fromRef != NULL:
*loc := forward (fromRef)

forward (fromRef) :
i1f alreadyMoved (fromRef) :
return forwardingAddress (fromRef)
toRef := (allocate in tospace)
memcpy (toRef, fromRef, fromRef->header.size)
setForwardingAddress (fromRef, toRef)
worklist.push (toRef)
return toRef

49

Queue?

* Yet again, algorithm shown is queue

» Object cliques still real

« Stack actually improves locality of object
cliques!

Even better moving

« Can we predict the best way to arrange
objects?

* No. NP-complete even with access
pattern oracle.

Forwarding

« Naive:

struct ObjectHeader {
struct TypelInfo *typelnfo;
void *forward;

by

52

Forwarding

e Still have those extra bits!

« Once an object is forwarded, no longer
need type info

 Careful: Pointer wrong in two ways

Allocation

 To Hell with free-lists!

« Bump-pointer is fast and sufficient

* No overallocation, fragmentation,
coalescence, complex data structures...

When to collect

 Half as much active heap
 Double resource utilization, or

e collect twice as often

mark/cons (e)

semispace
copying

—"-
-
-

-
-
-
-
-
-

-
--_--'-

larger heaps

0.5

smaller heaps

1
live'ratio

When to GC?

 Typically: When tospace is full
« GC takes O(L)

e (L is a constant for most programs)

Allocating pools

* Must keep two sets of pools
 Always allocate in both!

« Tospace “mirrors” fromspace, but don't
need individual frompools and topools

When to allocate pools

* Need double the space of mark&sweep

 Performance consideration:
* Throughput

* Latency

» More pools always better throughput

The Devil is in the Details

Compiler-controlled space

Pointer stack

SZ=2
ptrs

next \\‘~....

sz=1
ptrs
next

Compiler-controlled space

Pointer stack

SZ=2
ptrs

next \\‘~....

sz=1
ptrs
next

Compiler-controlled space

Pointer stack

SZ=2
ptrs

next \\‘~....

sz=1
ptrs
next

Compiler-controlled space

Pointer stack

SZ=2
ptrs

N
next i....
sz=1
ptrs

next

eap

Heap

« OS is dumb: Gives you some pages
* GC maintains pools

« “Heap” is all pools

* GC must keep track

Keepl

ng pools

Static space

Pool *heap

Pool Pool Pool

/ Pool *next/ Pool *next/ Pool *next

Allocate from first pool on

Might keep “current” pool for when pools fill

Keeping pools

Pool Pool Pool

Static space/ Pool *neXt/ S *next/ Pool *next

Pool *heaw
Pool *cu

Segregated blocks

» With segregated blocks, pools have fixed-
Sized objects

* No reason to mingle dissimilar pools

Pools w/ segregated blocks

Pool Pool Pool

Pool*hps|]
Pool

Pool *next

Pool Pool

Pool *next(Pool *next

Pools w/ semispace copying

* Need fromspace and tospace

» Pool “spaces” are non-intersecting, equal
Size

Keepl

ng pools

Static space

Pool *from
Pool *t O

Pool Pool Pool

/ Pool *next/ Pool *next/ Pool *next

Pool Pool Pool
™

Pool *next/ Pool *next/ Pool *next

Free-lists

 Global or per-pool?

* Global: Thread contention (not an issue
for now)

 Per-pool:
« Go through every pool every allocation? Or
« Accept lost space after large allocations?

Free-list order

« Mark-and-sweep makes address-ordered
free-list

» Pools aren't necessarily address-ordered
» Should they be?

Splitting vs overallocation

h|OlhlOh O F [hOIhOhOIN F [hO

“— Must be big enough for a free object

hOhOt) W [hOhOh{Ofh| F [|O

Header must specify sizeof(O+W)

Overallocating

 Can be avoided:
» Bitmapped-fits
» Allocation granule > size of free object

« Non-free-list allocation

e Let's think about headers...

Overallocating

struct ObjectHeader {

Cannot change
struct GCTypelInfo *typelnfo,; <

. per object

struct GCTypeInfo {

size t size; C - Does notrepresent

unsigned long pointerMap; overallocated size
b7

/76

Objects

» GC only knows:
« Size
 Location of references
» Both are in descriptor, also a GC object!

« Must make sure to keep object
descriptors alive

Objects

 Mutator is assumed correct

« References always point to heap, pointer
stack is correct, etc

» Mutator wrong — crash

Sizes and optimal configuration

 Several important metrics
« L =size of live objs « H =size of heap
« D =size of dead

« L mostly static

« Most objects die young

« H=L*3 typical, H=L*5 often ideal

So wasteful!

e If (H>>>L), I'm wasting space!
* Problem of fairness

» Can solve with IPC
 Memory is cheap

* Time Is expensive

Tradeoffs

* You choose H, but not L
e H>>>L:
 Less frequent GC

« Mark-and-sweep: More time spent in GC
(latency)

« H=L:
» Very frequent GC

