
Mark and sweep

1

Review

• Memory manager: Allocation and
revocation

• Revocation linked to allocation

• Scan heap for reachable objects, sweep to
free unreachable ones

2

Review

• Mutator yields

• Collector decides when to collect

• Collector controls allocation

• “Stop the world”: Collector in complete
control of heap

3

Marking

4

Obj

Obj

Obj

Obj

Obj

Obj

Root

•Graph reachability
problem
•Roots are not objects!

•Roots aren’t marked
•Roots don’t have
headers

Root task
very different
from object
task!

The mark algorithm (one version)
markPhase():
worklist := new Queue
foreach loc in roots:
ref := *loc
if ref != NULL and !marked(ref):
mark(ref)
worklist.push(ref)
markWorklist()

markWorklist():
while (ref := worklist.pop()):
foreach loc in ref->header.descriptor->ptrs:
child := *(ref+loc)
if child != NULL and !marked(ref):

mark(ref)
worklist.push(child)

5

Scan order

• Presented algorithm:

• Follows root pointers to completion before
moving on to another root pointer

• Is breadth-first for heap objects

6

This should make you angry!

Scan order

• Objects often form cliques

• Object cliques:

• Are allocated around the same time

• Mostly point at each other

• Should be allocated near each other

7

Scan order: Address-first?

• We could sort worklist by ref address

• Time to sort usually overwhelms saved
time scanning

8

Mark bit

• Without mark bit, graph reachability trace
may never end!

• Mark bit can be in header…

• Or, can keep a side table

• If in header: Where to put the bit?

9

Mark bit
struct ObjectHeader {
struct GCTypeInfo *typeInfo;
char markBit;

};

void mark(struct ObjectHeader *hdr) {
hdr->markBit = 1;

}

int isMarked(struct ObjectHeader *hdr) {
return hdr->markBit;

}

10

How much larger are objects
when this is added?

Bit-sneaky

• There are three1 wasted bits in our header

• All pointers have this extra space!

11

0 1 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0

1 On 32-bit systems, two

Pool address Object address
Always 0!

Bit-sneaky C
struct ObjectHeader {
struct GCTypeInfo *typeInfo;

};

void mark(struct ObjectHeader *hdr) {
hdr->typeInfo = (struct GCTypeInfo *)
((size_t) hdr->typeInfo | 1);

}

int isMarked(struct ObjectHeader *hdr) {
return (size_t) hdr->typeInfo & 1;

}

12

Worth it?

• If objects are small (hint: they are), every
word counts

• Huge complication: Type info pointer is no
longer valid!

• Must restore type info pointer later

13

Sweep

• Heap parsability is crucial!

• Consider heap parsability with:

• Bump-pointer allocation

• Free-list overallocation

• Free object type/header

14

Sweep algorithm
sweep():

freeList := new FreeList

foreach ref in heap:

if marked(ref):

unmark(ref)

else:

ref *:= new FreeObject

freeList.push(ref)

15

Discard old freelist

Must walk entire heap!

Perfect chance to unmark

Type of objects
change in sweep

16

O O Oh Oh Oh O O Oh Ohh h h h

17

O O Oh Oh Oh O O Oh Ohh h h h

18

O O Oh Oh Oh O O Oh Ohh h h h

19

O O Fh Oh Oh O O Oh Ohh h h h

20

O O Fh Fh Fh O O Oh Ohh h h h

21

O O Fh Fh Fh O O Oh Ohh h h h

22

O O Fh Fh Fh O O Fh Fhh h h h

Performance

• Mark: O(L)

• Sweep: O(H)

• Mark-and-sweep: O(H)

23

Bit-swapping

• Can avoid cost of clearing bits by swapping
meaning:

• In first collection, 0 = unreachable, 1 = reachable,

• in second collection, 1 = unreachable, 0 =
reachable, etc.

• Must remember to allocate with correct
mark!

24

Improving mark

• Depth-first vs. breadth-first vs. address-
ordered

• Bitmapped mark

• Other tricks beyond scope of course

25

Bitmapped mark
• Connected to bitmap free-list:

• Bitmap at beginning of pool

• Clear bitmap before marking

• One bit per word

• If object is alive, mark its words in bitmap

• Use as bitmap free-list during allocation

• With bit-swapping, no sweep

26

Improving sweep

• It’s not so bad (locality!)

• Improve by:

• Even better cache behavior,

• concurrent/lazy sweeping, or

• O(1) sweep

27

Sweep cache behavior

• Stride of sweep always object size

• CPUs prefetch

• Object size varies

• Segregated blocks: Object size constant,
perfect prefetch

28

Concurrent sweep

• Mutator will never touch unmarked
objects

• Sweep in a separate thread

• Must be careful about allocation/sweep
races!

29

Lazy sweep

• Sweep during allocation

• If free-list is empty, sweep until sufficient
free object is found

• Insufficient objects added to free-list

30

Lazy sweep

31

O O Oh Oh Oh O O Oh Ohh h h h

Sweep pointer maintained per pool

When allocating, if free-list is empty or has no suitable objects…

Lazy sweep

32

O O Oh Oh Oh O O Oh Ohh h h h

Sweep until a suitable object is found

This object is returned to mutator

Lazy sweep

33

O O Oh Fh Oh O O Oh Ohh h h h

Unsuitable objects added to free-list during allocation

Lazy sweep

34

O O Oh Fh Oh O O Oh Ohh h h h

… until a suitable object is found.

This object is returned to mutator

Lazy sweep performance

• Throughput

• Responsiveness

• Latency

• Resource utilization

• Fairness

35

O(1) sweep

• Walking the heap is O(H)

• Appending lists is O(1)

• Keep “allocated list”

• Mark by moving to new list

36

When to GC

• Must GC if:

• Free-list is empty,

• no free space in any pool, and

• OS cannot give any more space.

• Should GC far more often than that

37

When to GC

• Typical strategy is to GC when:

• An allocation is made that cannot be
satisfied without requesting a new pool, or

• traversing free-list is becoming expensive.

• Requires active monitoring

38

Free-list monitoring

• Depends on free-list type

• For, e.g., first-fits list, count number of
hops during allocation

• Frequent many-hop allocations =
fragmentation

39

When to GC

• If every full pool leads to GC, no new
pools allocated

• Must allocate new pools when collection
leaves pools mostly full

40

Pool space

• To gauge used pool space, simply sum
size of all reachable objects

• Due to fragmentation, free pool space is
not a perfect indicator of available space

• Might use free-list monitoring too

41

Summary

• Mark-and-sweep is exactly how it sounds

• Sweep seems expensive but has great
locality

• Optimizations can reduce or eliminate
sweep

42

Moving GC

43

Review

• Allocator owns pools

• Compiler controls roots

• Compiler informs allocator of roots,
object types

• Trace references to find living objects

44

Mark and sweep

• Very natural map to reachability

• Two passes

• Prone to fragmentation

45

Semispace copying

46

Semispace copying

• “fromspace” and “tospace”

• After moving from fromspace to tospace,
no reachable objects in fromspace

• Swap from/to space for new collection

• No sweep, free-lists, fragmentation

47

Implications

• Isn’t moving objects expensive?

• L <<< H

• Must update all references

• Must never copy twice

• Can only use half of heap (allocate in
tospace)

48

49

collect():
fromspace, tospace := tospace, fromspace
worklist := new Queue
foreach loc in roots:

process(loc)
while (ref := worklist.pop()):

scan(ref)

scan(ref):
foreach loc in ref->header.descriptor->ptrs:

process(ref+loc)

process(loc):
fromRef := *loc
if fromRef != NULL:

*loc := forward(fromRef)

forward(fromRef):
if alreadyMoved(fromRef):

return forwardingAddress(fromRef)
toRef := (allocate in tospace)
memcpy(toRef, fromRef, fromRef->header.size)
setForwardingAddress(fromRef, toRef)
worklist.push(toRef)
return toRef

Queue?

• Yet again, algorithm shown is queue

• Object cliques still real

• Stack actually improves locality of object
cliques!

50

Even better moving

• Can we predict the best way to arrange
objects?

• No. NP-complete even with access
pattern oracle.

51

Forwarding

• Naïve:

struct ObjectHeader {

struct TypeInfo *typeInfo;

void *forward;

};

52

Forwarding

• Still have those extra bits!

• Once an object is forwarded, no longer
need type info

• Careful: Pointer wrong in two ways

53

Allocation

• To Hell with free-lists!

• Bump-pointer is fast and sufficient

• No overallocation, fragmentation,
coalescence, complex data structures…

54

When to collect

• Half as much active heap

• Double resource utilization, or

• collect twice as often

55

56

When to GC?

• Typically: When tospace is full

• GC takes O(L)

• (L is a constant for most programs)

57

Allocating pools

• Must keep two sets of pools

• Always allocate in both!

• Tospace “mirrors” fromspace, but don’t
need individual frompools and topools

58

When to allocate pools

• Need double the space of mark&sweep

• Performance consideration:

• Throughput

• Latency

• More pools always better throughput

59

The Devil is in the Details

60

61

Compiler-controlled space Heap

Stack

val
val
val
ref
ref
val
ref
val
val

Pointer stack

sz=2
ptrs
next

sz=1
ptrs
next

Pool

Pool

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Desc.
hdr

size=4
ptrs=
1011

Desc.
hdr

size=3
ptrs=
001

Obj
hdr
ref
val
ref

62

Compiler-controlled space Heap

Stack

val
val
val
ref
ref
val
ref
val
val

Pointer stack

sz=2
ptrs
next

sz=1
ptrs
next

Pool

Pool

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Desc.
hdr

size=4
ptrs=
1011

Desc.
hdr

size=3
ptrs=
001

Obj
hdr
ref
val
ref

63

Compiler-controlled space Heap

Stack

val
val
val
ref
ref
val
ref
val
val

Pointer stack

sz=2
ptrs
next

sz=1
ptrs
next

Pool

Pool

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Desc.
hdr

size=4
ptrs=
1011

Desc.
hdr

size=3
ptrs=
001

Obj
hdr
ref
val
ref

64

Compiler-controlled space Heap

Stack

val
val
val
ref
ref
val
ref
val
val

Pointer stack

sz=2
ptrs
next

sz=1
ptrs
next

Pool

Pool

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Obj
hdr
ref
val
ref

Desc.
hdr

size=4
ptrs=
1011

Desc.
hdr

size=3
ptrs=
001

Heap

• OS is dumb: Gives you some pages

• GC maintains pools

• “Heap” is all pools

• GC must keep track

65

Keeping pools

66

Static space

Pool *heap

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Allocate from first pool on

Might keep “current” pool for when pools fill

Keeping pools

67

Static space

Pool *heap

Pool *cur

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Segregated blocks

• With segregated blocks, pools have fixed-
sized objects

• No reason to mingle dissimilar pools

68

Pools w/ segregated blocks

69

Static space

Pool*hps[]

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Pools w/ semispace copying

• Need fromspace and tospace

• Pool “spaces” are non-intersecting, equal
size

70

Keeping pools

71

Static space

Pool *from

Pool *to

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Pool

Pool *next

Free-lists

• Global or per-pool?

• Global: Thread contention (not an issue
for now)

• Per-pool:

• Go through every pool every allocation? Or

• Accept lost space after large allocations?

72

Free-list order

• Mark-and-sweep makes address-ordered
free-list

• Pools aren’t necessarily address-ordered

• Should they be?

73

Splitting vs overallocation

74

Oh Oh Fh Oh Oh Oh Fh Oh

Oh Oh h Oh Oh Oh Fh OhFOh

Oh Oh Wh Oh Oh Oh Fh OhO

Header must specify sizeof(O+W)

Must be big enough for a free object

Overallocating

• Can be avoided:

• Bitmapped-fits

• Allocation granule ≥ size of free object

• Non-free-list allocation

• Let’s think about headers…

75

Overallocating

76

struct ObjectHeader {

struct GCTypeInfo *typeInfo;

};

struct GCTypeInfo {

size_t size;

unsigned long pointerMap;

};

Cannot change
per object

Does not represent
overallocated size

Objects

• GC only knows:

• Size

• Location of references

• Both are in descriptor, also a GC object!

• Must make sure to keep object
descriptors alive

77

Objects

• Mutator is assumed correct

• References always point to heap, pointer
stack is correct, etc

• Mutator wrong → crash

78

Sizes and optimal configuration

• Several important metrics

• L mostly static

• Most objects die young

• H=L*3 typical, H=L*5 often ideal

79

• L = size of live objs

• D = size of dead

• H = size of heap

So wasteful!

• If (H >>> L), I’m wasting space!

• Problem of fairness

• Can solve with IPC

• Memory is cheap

• Time is expensive

80

Tradeoffs
• You choose H, but not L

• H >>> L:

• Less frequent GC

• Mark-and-sweep: More time spent in GC
(latency)

• H ≈ L:

• Very frequent GC

81

