
Mark and sweep
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Review

• Memory manager: Allocation and 
revocation

• Revocation linked to allocation

• Scan heap for reachable objects, sweep to 
free unreachable ones
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Review

• Mutator yields

• Collector decides when to collect

• Collector controls allocation

• “Stop the world”: Collector in complete 
control of heap
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Marking
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•Graph reachability
problem
•Roots are not objects!

•Roots aren’t marked
•Roots don’t have 
headers



Root task 
very different 
from object 
task!

The mark algorithm (one version)
markPhase():
worklist := new Queue
foreach loc in roots:
ref := *loc
if ref != NULL and !marked(ref):
mark(ref)
worklist.push(ref)
markWorklist()

markWorklist():
while (ref := worklist.pop()):
foreach loc in ref->header.descriptor->ptrs:
child := *(ref+loc)
if child != NULL and !marked(ref):

mark(ref)
worklist.push(child)
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Scan order

• Presented algorithm:

• Follows root pointers to completion before 
moving on to another root pointer

• Is breadth-first for heap objects

6

This should make you angry!



Scan order

• Objects often form cliques

• Object cliques:

• Are allocated around the same time

• Mostly point at each other

• Should be allocated near each other
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Scan order: Address-first?

• We could sort worklist by ref address

• Time to sort usually overwhelms saved 
time scanning
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Mark bit

• Without mark bit, graph reachability trace 
may never end!

• Mark bit can be in header…

• Or, can keep a side table

• If in header: Where to put the bit?
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Mark bit
struct ObjectHeader {
struct GCTypeInfo *typeInfo;
char markBit;

};

void mark(struct ObjectHeader *hdr) {
hdr->markBit = 1;

}

int isMarked(struct ObjectHeader *hdr) {
return hdr->markBit;

}
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How much larger are objects 
when this is added?



Bit-sneaky

• There are three1 wasted bits in our header

• All pointers have this extra space!
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1 On 32-bit systems, two

Pool address Object address
Always 0!



Bit-sneaky C
struct ObjectHeader {
struct GCTypeInfo *typeInfo;

};

void mark(struct ObjectHeader *hdr) {
hdr->typeInfo = (struct GCTypeInfo *)
((size_t) hdr->typeInfo | 1);

}

int isMarked(struct ObjectHeader *hdr) {
return (size_t) hdr->typeInfo & 1;

}
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Worth it?

• If objects are small (hint: they are), every 
word counts

• Huge complication: Type info pointer is no 
longer valid!

• Must restore type info pointer later
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Sweep

• Heap parsability is crucial!

• Consider heap parsability with:

• Bump-pointer allocation

• Free-list overallocation

• Free object type/header

14



Sweep algorithm
sweep():

freeList := new FreeList

foreach ref in heap:

if marked(ref):

unmark(ref)

else:

ref *:= new FreeObject

freeList.push(ref)
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Discard old freelist

Must walk entire heap!

Perfect chance to unmark

Type of objects
change in sweep
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Performance

• Mark: O(L)

• Sweep: O(H)

• Mark-and-sweep: O(H)
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Bit-swapping

• Can avoid cost of clearing bits by swapping 
meaning:

• In first collection, 0 = unreachable, 1 = reachable,

• in second collection, 1 = unreachable, 0 = 
reachable, etc.

• Must remember to allocate with correct 
mark!
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Improving mark

• Depth-first vs. breadth-first vs. address-
ordered

• Bitmapped mark

• Other tricks beyond scope of course
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Bitmapped mark
• Connected to bitmap free-list:

• Bitmap at beginning of pool

• Clear bitmap before marking

• One bit per word

• If object is alive, mark its words in bitmap

• Use as bitmap free-list during allocation

• With bit-swapping, no sweep

26



Improving sweep

• It’s not so bad (locality!)

• Improve by:

• Even better cache behavior,

• concurrent/lazy sweeping, or

• O(1) sweep
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Sweep cache behavior

• Stride of sweep always object size

• CPUs prefetch

• Object size varies

• Segregated blocks: Object size constant, 
perfect prefetch
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Concurrent sweep

• Mutator will never touch unmarked 
objects

• Sweep in a separate thread

• Must be careful about allocation/sweep 
races!
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Lazy sweep

• Sweep during allocation

• If free-list is empty, sweep until sufficient 
free object is found

• Insufficient objects added to free-list
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Lazy sweep
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Sweep pointer maintained per pool

When allocating, if free-list is empty or has no suitable objects…



Lazy sweep
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Sweep until a suitable object is found

This object is returned to mutator



Lazy sweep
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Unsuitable objects added to free-list during allocation



Lazy sweep
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… until a suitable object is found.

This object is returned to mutator



Lazy sweep performance

• Throughput

• Responsiveness

• Latency

• Resource utilization

• Fairness

35



O(1) sweep

• Walking the heap is O(H)

• Appending lists is O(1)

• Keep “allocated list”

• Mark by moving to new list
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When to GC

• Must GC if:

• Free-list is empty,

• no free space in any pool, and

• OS cannot give any more space.

• Should GC far more often than that
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When to GC

• Typical strategy is to GC when:

• An allocation is made that cannot be 
satisfied without requesting a new pool, or

• traversing free-list is becoming expensive.

• Requires active monitoring
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Free-list monitoring

• Depends on free-list type

• For, e.g., first-fits list, count number of 
hops during allocation

• Frequent many-hop allocations = 
fragmentation
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When to GC

• If every full pool leads to GC, no new 
pools allocated

• Must allocate new pools when collection 
leaves pools mostly full
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Pool space

• To gauge used pool space, simply sum 
size of all reachable objects

• Due to fragmentation, free pool space is 
not a perfect indicator of available space

• Might use free-list monitoring too
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Summary

• Mark-and-sweep is exactly how it sounds

• Sweep seems expensive but has great 
locality

• Optimizations can reduce or eliminate 
sweep
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Moving GC
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Review

• Allocator owns pools

• Compiler controls roots

• Compiler informs allocator of roots, 
object types

• Trace references to find living objects
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Mark and sweep

• Very natural map to reachability

• Two passes

• Prone to fragmentation
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Semispace copying
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Semispace copying

• “fromspace” and “tospace”

• After moving from fromspace to tospace, 
no reachable objects in fromspace

• Swap from/to space for new collection

• No sweep, free-lists, fragmentation
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Implications

• Isn’t moving objects expensive?

• L <<< H

• Must update all references

• Must never copy twice

• Can only use half of heap (allocate in 
tospace)
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collect():
fromspace, tospace := tospace, fromspace
worklist := new Queue
foreach loc in roots:

process(loc)
while (ref := worklist.pop()):

scan(ref)

scan(ref):
foreach loc in ref->header.descriptor->ptrs:

process(ref+loc)

process(loc):
fromRef := *loc
if fromRef != NULL:

*loc := forward(fromRef)

forward(fromRef):
if alreadyMoved(fromRef):

return forwardingAddress(fromRef)
toRef := (allocate in tospace)
memcpy(toRef, fromRef, fromRef->header.size)
setForwardingAddress(fromRef, toRef)
worklist.push(toRef)
return toRef



Queue?

• Yet again, algorithm shown is queue

• Object cliques still real

• Stack actually improves locality of object 
cliques!
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Even better moving

• Can we predict the best way to arrange 
objects?

• No. NP-complete even with access 
pattern oracle.
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Forwarding

• Naïve:

struct ObjectHeader {

struct TypeInfo *typeInfo;

void *forward;

};
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Forwarding

• Still have those extra bits!

• Once an object is forwarded, no longer 
need type info

• Careful: Pointer wrong in two ways
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Allocation

• To Hell with free-lists!

• Bump-pointer is fast and sufficient

• No overallocation, fragmentation, 
coalescence, complex data structures…
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When to collect

• Half as much active heap

• Double resource utilization, or

• collect twice as often 
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When to GC?

• Typically: When tospace is full

• GC takes O(L)

• (L is a constant for most programs)
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Allocating pools

• Must keep two sets of pools

• Always allocate in both!

• Tospace “mirrors” fromspace, but don’t 
need individual frompools and topools
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When to allocate pools

• Need double the space of mark&sweep

• Performance consideration:

• Throughput

• Latency

• More pools always better throughput
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The Devil is in the Details
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Heap

• OS is dumb: Gives you some pages

• GC maintains pools

• “Heap” is all pools

• GC must keep track
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Keeping pools
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Static space

Pool *heap

Pool

Pool *next
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Pool *next
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Allocate from first pool on

Might keep “current” pool for when pools fill



Keeping pools
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Segregated blocks

• With segregated blocks, pools have fixed-
sized objects

• No reason to mingle dissimilar pools
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Pools w/ segregated blocks
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Pools w/ semispace copying

• Need fromspace and tospace

• Pool “spaces” are non-intersecting, equal 
size
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Keeping pools
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Free-lists

• Global or per-pool?

• Global: Thread contention (not an issue 
for now)

• Per-pool:

• Go through every pool every allocation? Or

• Accept lost space after large allocations?

72



Free-list order

• Mark-and-sweep makes address-ordered 
free-list

• Pools aren’t necessarily address-ordered

• Should they be?
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Splitting vs overallocation
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Header must specify sizeof(O+W)

Must be big enough for a free object



Overallocating

• Can be avoided:

• Bitmapped-fits

• Allocation granule ≥ size of free object

• Non-free-list allocation

• Let’s think about headers…
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Overallocating
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struct ObjectHeader {

struct GCTypeInfo *typeInfo;

};

struct GCTypeInfo {

size_t size;

unsigned long pointerMap;

};

Cannot change 
per object

Does not represent 
overallocated size



Objects

• GC only knows:

• Size

• Location of references

• Both are in descriptor, also a GC object!

• Must make sure to keep object 
descriptors alive
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Objects

• Mutator is assumed correct

• References always point to heap, pointer 
stack is correct, etc

• Mutator wrong → crash
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Sizes and optimal configuration

• Several important metrics

• L mostly static

• Most objects die young

• H=L*3 typical, H=L*5 often ideal
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• L = size of live objs

• D = size of dead

• H = size of heap



So wasteful!

• If (H >>> L), I’m wasting space!

• Problem of fairness

• Can solve with IPC

• Memory is cheap

• Time is expensive
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Tradeoffs
• You choose H, but not L

• H >>> L:

• Less frequent GC

• Mark-and-sweep: More time spent in GC 
(latency)

• H ≈ L:

• Very frequent GC
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