
CS842: Automatic Memory Management and Garbage Collection

Concurrent GC

1



Schedule
M W

Sept 14 Intro/Background Basics/ideas

Sept 21 Allocation/layout GGGGC

Sept 28 Mark/Sweep Copying GC

Octo 5 Details Ref C

Octo 12 Thanksgiving Mark/Compact

Octo 19 Partitioning/Gen Generational

Octo 26 Other part Runtime

Nove 2 Final/weak Conservative

Nove 9 Ownership Adv topics

Nove 16 Adv topics Adv topics

Nove 23 Presentations Presentations

Nove 30 Presentations Presentations

2



Final stuff

• Presentations start next Monday

• If you don’t schedule with me by Friday, 
0% on the final presentation

• Final project due the last week

3



4



Requirements

• Safety: At least all reachable objects are 
retained

• Liveness: Garbage collection eventually 
terminates

• Precision: Unreachable objects are 
collected

5



Goals

• Parallel GC can improve throughput

• Concurrent GC can improve latency

• Improving latency this way invariably 
hampers throughput

• Must choose which matters when

6



Phases

• Moving is tricky, but not impossible (we 
focus on mark-and-sweep)

• Mark phase is when mutator and 
collector collide

• If mark is correct, mutator cannot touch 
any unmarked objects, so sweep is easy

7



Atomicity

• Without concurrent GC, collection is 
atomic to mutators

• Now, mutator and collector must 
communicate

• Need to worry about individual actions’ 
atomicity: Read/write fields, read/write 
roots, scan objects, etc.

8



Writing

• When we write a reference, we inherently 
delete a reference

• This means we can move references 
around

• None of this changed without 
concurrency, and it wreaks Hell on 
reachability

9



10

a

b

d

c

Worklist:
a
c

Mutator:



11

a*

b

d

c

Worklist:
b
c

Mutator:
a.x = c.x
c.x = null



11

a*

b

d

c

Worklist:
b
c

Mutator:
a.x = c.x
c.x = null



11

a*

b

d

c

Worklist:
b
c

Mutator:
a.x = c.x
c.x = null



12

a*

b*

d

c

Worklist:
c

Mutator:



13

a*

b*

d

c*

Worklist: Mutator:

d is reachable 
but unmarked!



Mutator/collector agreement

• Problem arises when:

• A reference to an unmarked object…

• is written into a marked object…

• and no reference remains from an unmarked 
object.

• If marking is atomic, mutator can check all of 
this

14



Return of the revenge of the write barrier

• Write barrier must somehow handle such 
“bad references”

• Different techniques have different 
benefits and flaws

• Remember: Safety, liveness, precision

15



16

Steele barrier:
write(obj, loc, ref):

*(obj+loc) := ref

if obj->mark:

if !ref->mark:

unmarkAndAddToWorklist(obj)

Boehm et al barrier:
write(obj, loc, ref):

*(obj+loc) := ref

if obj->mark:

unmarkAndAddToWorklist(obj)

Dijkstra et al barrier:
write(obj, loc, ref):

*(obj+loc) := ref

if !ref->mark:

markAndScan(ref)



Worklist problems

• With less liveness, we can end up in a 
loop, if the mutator keeps changing the 
same object

• The only general solution is detection and 
mutator pausing

17



More barriers more problems

• With write barriers alone, we miss the roots

• Roots are tricky for barriers: Even the 
variables in the barriers themselves are roots

• Common fix: Pause mutators to scan roots, 
collection is done only when roots point to 
no unmarked objects

18



Read barriers

• Another solution to the root problem is 
read barriers

• If we can scan the roots once, the only 
other place a mutator can get references 
from is objects: Put the barrier there

• Lets us ignore root changes

19



20

Baker barrier:
read(obj, loc):

if !obj->mark or !obj->finished:

ref := handle(*(obj+loc))

else:

ref := *(obj+loc)

return ref

An object is 
“finished” if it’s been 
fully scanned and (if 
applicable) all its 
references have 
been updated

(Note: Moving is 
possible here!)

Appel barrier:
read(obj, loc):

if !obj->mark or !obj->finished:

handle(obj)

ref := *(obj+loc)

return ref



Breather

• We make sure we don’t miss anything by 
giving the mutator some of our work

• Mutator needs write barriers, maybe even 
read barriers, to accomplish this

• Collector might need to rescan objects

21



Atomically handling worklists

• Mutator must add to worklists while 
collector is consuming

• Simple locking works but is infeasibly slow

• Even lock-free algorithms are infeasibly 
slow

22



Return of the revenge of cards

• Original purpose for card table: 
Remember objects with inter-partition 
references

• New purpose for card table: Remember 
objects which the mutator changed 
during collection

23



24

Steele barrier:
write(obj, loc, ref):

*(obj+loc) := ref

if obj->mark:

if !ref->mark:

unmarkAndAddToWorklist(obj)

Boehm et al barrier:
write(obj, loc, ref):

*(obj+loc) := ref

if obj->mark:

unmarkAndAddToWorklist(obj)

Mark card

Mark card



Re-scan of dirty cards
collect():

clearCardTable()
clearMarks()
scanRoots()
while true:
doWorklist()
cardsClean := true
for each card:
if card is dirty:
cardsClean := false
(mark card as clean)
addObjectsToWorklist(card)

if cardsClean: break

25

In concurrent, this likely means 
“swap meaning of mark bit”



Thinking about progress

26

Steele barrier:
write(obj, loc, ref):

*(obj+loc) := ref

if obj->mark:

if !ref->mark:

unmarkAndMarkCard(obj)

Boehm et al barrier:
write(obj, loc, ref):

*(obj+loc) := ref

if obj->mark:

unmarkAndMarkCard(obj)



Concurrent vs incremental

• Major difference: Nothing changes out 
from under you in incremental

• Incremental requires no special atomic 
operations (typically)

27



When to GC

• In non-concurrent GC, “when it’s full” was 
often good enough

• Now, that’s never good enough

• If mutator fills all pools during collection, it 
must stall

• When to allocate new pools same as any 
other GC

28



Concurrent copying

• Worst possibility: Mutator, at various 
times, sees and modifies both copies

• Cleanest possibility: Mutator sees only 
tospace objects

29



Mostly-concurrent copying
• Pause all mutators to scan roots and copy their 

objects to tospace

• Resume mutators

• If mutator finds not-yet-scanned reference, make it do 
the work

read(obj, loc):
if !obj->finished:

ref := handle(*(obj+loc))
else:

ref := *(obj+loc)
return ref

30



Fully-concurrent copying

read(obj, loc):
if obj in fromspace:

obj := handle(obj)
if !obj->finished:

ref := handle(*(obj+loc))
else:

ref := *(obj+loc)
return ref

31



So expensive!

• These barriers are very expensive

• Some are at least not atomic (still better 
than reference counting)

• Expense hugely reduces throughput

• Barriers are totally unnecessary if no GC 
is happening

32



Cheaper barrier

write(obj, loc, ref):

if !gcCycleActive:

*(obj+loc) := ref

else:

(full write barrier)

33



Even cheaper barrier
• Modern VMs generate machine code at 

runtime (JIT)

• Modern VMs allow swapping a function’s 
machine code even while it’s running

• Solution: Swap all machine code for barrier 
version during collection, swap back 
afterwards

• This magic is outside the scope of this course

34



Is it worth it?

• With code-swapping, still lower 
throughput, but not by a lot

• GC latency is either nonexistent (full 
concurrent) or very small (mostly 
concurrent)

• So: Worth it if (1) you’re in a smart VM and 
(2) latency is important to you

35


