
CS842: Automatic Memory Management and Garbage Collection

Partitioning the Heap
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Schedule
M W

Sept 14 Intro/Background Basics/ideas

Sept 21 Allocation/layout GGGGC

Sept 28 Mark/Sweep Copying GC

Octo 5 Details Ref C

Octo 12 Thanksgiving Mark/Compact

Octo 19 Partitioning/Gen Generational

Octo 26 Other part Runtime

Nove 2 Final/weak Conservative

Nove 9 Ownership Regions etc

Nove 16 Adv topics Adv topics

Nove 23 Presentations Presentations

Nove 30 Presentations Presentations
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Review

• Roots → objects → reachable objects →
discard unreachable

• Moving vs. non-moving

• Copying vs. compacting

• Pause vs. live

3



Tradeoffs

• Different strategies have different 
tradeoffs

• Mark-and-sweep: No moving, fragments

• Copying: Better locality, worst utilization

• Compacting: Good locality, very slow
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Tradeoffs

• Best strategy to use depends on program

• Every program is different…

• Instead, use multiple strategies

• Choose “intelligently” per object
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Partitioning
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Paritioning

• Generally:
• Objects in partitions share some property

• Roots can point at any partition

• Cross-partition references allowed

• Partitions may hold dead cross-partition 
references

• May be false for some partitioning style
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Why partition?

• Usually: Use different GC schemes

• Often: GC only some partition(s) to reduce 
GC pause time

• Sometimes: Different allocation schemes, 
fragmentation avoidance, etc.

• Segregated blocks!
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Elephant in the room

• #1 partitioning scheme is generational GC

• Generational = partition by age

• We’ll get there, but others first
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Mobility

• Moving objects reduces fragmentation

• Moving objects means references must 
change: Burden on compiler to handle 
references properly

• “Normal” C code not so nice
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Mobility

• Non-moving: Must have at least one
reference

• Java communicating with C:

• Keep a reference in Java’s roots

• Give reference to C (GC unaware)

• When C is done, discard Java root ref
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Partitioning for mobility
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Stack Heap

Movable partition “Pinned” partition

Invisible 
C stack 
frame

We don’t 
see this 

reference!

This reference 
keeps crucial 
object alive

References 
which can 

never go to C 
are movable



Mobility necessities

• Must know all objects which might be 
immobile (e.g. only certain types go to C)

• Assure visible root reference stays alive

• Immobile heap mark-and-sweep

• Must GC whole heap, not one partition
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GC’ing with partitions

• Every GC strategy has a mark-like phase

• Collectively these are called “tracing”

• This phase broadly similar in each GC

• When scanning object, determine which 
kind of tracing based on which partition
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Partitioning algorithm sketch
trace():

worklist := new Queue()
(add roots to worklist)
while loc := worklist.pop():
obj := *loc
if obj is in M&S or compacting partition:
marked := mark(obj)

else if obj is in copying partition:
obj, marked := copy(obj)

if !marked:
(add obj’s references to worklist)

sweep():
mandsSweep()
compactingSweeps()
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Distinguishing partitions

• Partitions are separate sets of pools

• Pool remembers which partition it’s in
(typically pool header)
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• Partitions are separate sets of pools

• Pool remembers which partition it’s in
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“Pool mask”: 0xFFFF0000
(0x0104B0C8 & 0xFFFF0000) == 0x01040000

(struct Pool *) ((size_t)  p & POOL_MASK)

Align pools to get nice pool mask



Breather

• Partition to use best of multiple strategies

• Partitions just part of heap: References 
from roots and other partitions

• Algorithm mixes by checking partition

• Partition by mobility for C
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Partition by size
• Segregated blocks: Different pools for different 

object sizes, no fragmentation

• Copying: No fragmentation + improved locality, 
must copy objects

• Mix them:
• Copy smallest objects
• M&S + segregated blocks for larger
• M&S + regular free-list for largest
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Partition by size

• Natural extension of segregated blocks

• One size per pool [copy pool(s) flexible]

• Too-large objects have own pool(s)

• No fragmentation except last pool(set)

• Other benefits: Fast allocation, full-heap 
sweep only on large objects (faster)
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Partition by kind

• “Kind” may have many meanings:

• Type (e.g. language type annotations, mutability)

• GC-relevant category (e.g. references vs. no 
references)

• Runtime properties (e.g. owner, trust, source)

• Memory properties (e.g. alignment, 
executability)
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Partitioning by executability
• JIT compilers generate code at runtime

• That code can die

• That code must be executable

• Making whole heap executable is a very bad 
idea™

• Place executable “objects” on own executable 
heap
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Partitioning by thread

• Threads cause problems:

• Allocation contention

• Stop-the-world (all threads must yield)

• Let’s not even talk about reference counting

• Can partitioning by threads solve them?
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Partitioning by thread

• Each thread gets own partition

• Collect just one thread!

26



Partitioning by thread

27

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack



Partitioning by thread

28

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack



Partitioning by thread

28

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Can only scan own 
thread’s roots: 

Others may change 
during scan!



Partitioning by thread

28

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Can only scan own 
thread’s roots: 

Others may change 
during scan!

Don’t follow pointers out 
of partition: Not our job



Partitioning by thread

28

T1 stack Heap
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Others may change 
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Inter-thread madness

• Inter-thread links/modification causing 
problems

• Write barriers to the rescue!

write(loc, obj):
if threadOf(loc) != threadOf(obj) or

threadOf(loc) != myThread():
markAsInterthread(obj)

*loc := obj
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Partitioning by thread
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Inter-thread objects

• Inter-thread mark is a long-term mark

• Any object with inter-thread references 
cannot be collected in partial GC

• Still need occasional full GC to collect 
inter-thread objects

• Maybe move objects to other threads
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Thread-local allocation

• Without thread partitioning, allocation 
must lock

• Big lock, big contention!

• Partition per thread: No locking

• Partitioning by thread for allocation 
worthwhile even without per-thread GC
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When/what to GC

• With flat GC: When all pools full

• With partitioned GC: When a partition is full

• How to decide when to do a full GC?

• Depends on partitioning scheme…

• Threads: When large portion of objects are inter-
thread marked
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Partitioning by age

• “Young” partition and “old” partition

• Called “generations”

• Objects allocated in young partition

• Move to old partition if they survive

• Usually collect only young (most objects 
die young)
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