
CS842: Automatic Memory Management and Garbage Collection

Partitioning the Heap

1

Schedule
M W

Sept 14 Intro/Background Basics/ideas

Sept 21 Allocation/layout GGGGC

Sept 28 Mark/Sweep Copying GC

Octo 5 Details Ref C

Octo 12 Thanksgiving Mark/Compact

Octo 19 Partitioning/Gen Generational

Octo 26 Other part Runtime

Nove 2 Final/weak Conservative

Nove 9 Ownership Regions etc

Nove 16 Adv topics Adv topics

Nove 23 Presentations Presentations

Nove 30 Presentations Presentations

2

Review

• Roots → objects → reachable objects →
discard unreachable

• Moving vs. non-moving

• Copying vs. compacting

• Pause vs. live

3

Tradeoffs

• Different strategies have different
tradeoffs

• Mark-and-sweep: No moving, fragments

• Copying: Better locality, worst utilization

• Compacting: Good locality, very slow

4

Tradeoffs

• Best strategy to use depends on program

• Every program is different…

• Instead, use multiple strategies

• Choose “intelligently” per object

5

Partitioning

6

Stack Heap

Partition Partition

Paritioning

• Generally:
• Objects in partitions share some property

• Roots can point at any partition

• Cross-partition references allowed

• Partitions may hold dead cross-partition
references

• May be false for some partitioning style

7

Why partition?

• Usually: Use different GC schemes

• Often: GC only some partition(s) to reduce
GC pause time

• Sometimes: Different allocation schemes,
fragmentation avoidance, etc.

• Segregated blocks!

8

Elephant in the room

• #1 partitioning scheme is generational GC

• Generational = partition by age

• We’ll get there, but others first

9

Mobility

• Moving objects reduces fragmentation

• Moving objects means references must
change: Burden on compiler to handle
references properly

• “Normal” C code not so nice

10

Mobility

• Non-moving: Must have at least one
reference

• Java communicating with C:

• Keep a reference in Java’s roots

• Give reference to C (GC unaware)

• When C is done, discard Java root ref

11

Partitioning for mobility

12

Stack Heap

Movable partition “Pinned” partition

Invisible
C stack
frame

Partitioning for mobility

13

Stack Heap

Movable partition “Pinned” partition

Invisible
C stack
frame

Partitioning for mobility

13

Stack Heap

Movable partition “Pinned” partition

Invisible
C stack
frame

We don’t
see this

reference!

Partitioning for mobility

13

Stack Heap

Movable partition “Pinned” partition

Invisible
C stack
frame

We don’t
see this

reference!

This reference
keeps crucial
object alive

Partitioning for mobility

13

Stack Heap

Movable partition “Pinned” partition

Invisible
C stack
frame

We don’t
see this

reference!

This reference
keeps crucial
object alive

References
which can

never go to C
are movable

Mobility necessities

• Must know all objects which might be
immobile (e.g. only certain types go to C)

• Assure visible root reference stays alive

• Immobile heap mark-and-sweep

• Must GC whole heap, not one partition

14

GC’ing with partitions

• Every GC strategy has a mark-like phase

• Collectively these are called “tracing”

• This phase broadly similar in each GC

• When scanning object, determine which
kind of tracing based on which partition

15

Partitioning algorithm sketch
trace():

worklist := new Queue()
(add roots to worklist)
while loc := worklist.pop():
obj := *loc
if obj is in M&S or compacting partition:
marked := mark(obj)

else if obj is in copying partition:
obj, marked := copy(obj)

if !marked:
(add obj’s references to worklist)

sweep():
mandsSweep()
compactingSweeps()

16

Distinguishing partitions

• Partitions are separate sets of pools

• Pool remembers which partition it’s in
(typically pool header)

17

Distinguishing partitions

• Partitions are separate sets of pools

• Pool remembers which partition it’s in
(typically pool header)

17

“Pool mask”: 0xFFFF0000
(0x0104B0C8 & 0xFFFF0000) == 0x01040000

(struct Pool *) ((size_t) p & POOL_MASK)

Distinguishing partitions

• Partitions are separate sets of pools

• Pool remembers which partition it’s in
(typically pool header)

17

“Pool mask”: 0xFFFF0000
(0x0104B0C8 & 0xFFFF0000) == 0x01040000

(struct Pool *) ((size_t) p & POOL_MASK)

Align pools to get nice pool mask

Breather

• Partition to use best of multiple strategies

• Partitions just part of heap: References
from roots and other partitions

• Algorithm mixes by checking partition

• Partition by mobility for C

18

Partition by size
• Segregated blocks: Different pools for different

object sizes, no fragmentation

• Copying: No fragmentation + improved locality,
must copy objects

• Mix them:
• Copy smallest objects
• M&S + segregated blocks for larger
• M&S + regular free-list for largest

19

Partitioning for size

20

Stack Heap

Small obj. partition Large obj. partition

Partitioning for size

20

Stack Heap

Small obj. partition Large obj. partition

Want to avoid time taken
to copy big objects

Partitioning for size

20

Stack Heap

Small obj. partition Large obj. partition

Want to avoid time taken
to copy big objects

Locality less relevant to
big objects: Cache fits

only one anyway!

Partitioning for size

21

Stack Heap

Small obj. partition Large obj. partition

Partition by size

• Natural extension of segregated blocks

• One size per pool [copy pool(s) flexible]

• Too-large objects have own pool(s)

• No fragmentation except last pool(set)

• Other benefits: Fast allocation, full-heap
sweep only on large objects (faster)

22

Partition by kind

• “Kind” may have many meanings:

• Type (e.g. language type annotations, mutability)

• GC-relevant category (e.g. references vs. no
references)

• Runtime properties (e.g. owner, trust, source)

• Memory properties (e.g. alignment,
executability)

23

Partitioning by executability
• JIT compilers generate code at runtime

• That code can die

• That code must be executable

• Making whole heap executable is a very bad
idea™

• Place executable “objects” on own executable
heap

24

Partitioning by thread

• Threads cause problems:

• Allocation contention

• Stop-the-world (all threads must yield)

• Let’s not even talk about reference counting

• Can partitioning by threads solve them?

25

Partitioning by thread

• Each thread gets own partition

• Collect just one thread!

26

Partitioning by thread

27

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Partitioning by thread

28

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Partitioning by thread

28

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Can only scan own
thread’s roots:

Others may change
during scan!

Partitioning by thread

28

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Can only scan own
thread’s roots:

Others may change
during scan!

Don’t follow pointers out
of partition: Not our job

Partitioning by thread

28

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Can only scan own
thread’s roots:

Others may change
during scan!

Don’t follow pointers out
of partition: Not our job

Our thread’s objects could
be referenced or changed

by other threads!

Inter-thread madness

• Inter-thread links/modification causing
problems

• Write barriers to the rescue!

write(loc, obj):
if threadOf(loc) != threadOf(obj) or

threadOf(loc) != myThread():
markAsInterthread(obj)

*loc := obj

29

Partitioning by thread

30

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Partitioning by thread

31

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Partitioning by thread

32

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Partitioning by thread

32

T1 stack Heap

Thread #2 partition Thread #1 partition

T2 stack

Cannot be collected!

Inter-thread objects

• Inter-thread mark is a long-term mark

• Any object with inter-thread references
cannot be collected in partial GC

• Still need occasional full GC to collect
inter-thread objects

• Maybe move objects to other threads

33

Thread-local allocation

• Without thread partitioning, allocation
must lock

• Big lock, big contention!

• Partition per thread: No locking

• Partitioning by thread for allocation
worthwhile even without per-thread GC

34

When/what to GC

• With flat GC: When all pools full

• With partitioned GC: When a partition is full

• How to decide when to do a full GC?

• Depends on partitioning scheme…

• Threads: When large portion of objects are inter-
thread marked

35

Partitioning by age

• “Young” partition and “old” partition

• Called “generations”

• Objects allocated in young partition

• Move to old partition if they survive

• Usually collect only young (most objects
die young)

36

Partitioning by age

• “Young” partition and “old” partition

• Called “generations”

• Objects allocated in young partition

• Move to old partition if they survive

• Usually collect only young (most objects
die young)

36

