CS842: Automatic Memory Management and Garbage Collection

Partitioning the Heap



Schedule

Sept 14

Sept 21
Sept 28
Octo 5

Octo 12

Octo 19
Octo 26
Nove 2

Nove 9

Nove 16
Nove 23
Nove 30

M
Intro/Background

Allocation/layout
Mark/Sweep
Details
Thanksgiving

Partitioning/Gen
Other part
Final/weak
Ownership

Adv topics
Presentations
Presentations

W
Basics/ideas

GGGGC
Copying GC
Ref C
Mark/Compact

Generational
Runtime
Conservative
Regions etc
Adv topics
Presentations
Presentations



Review

« Roots — objects — reachable objects —
discard unreachable

* Moving vs. non-moving
» Copying vs. compacting

 Pause vs. live



Tradeoffs

» Different strategies have different
tradeoffs

« Mark-and-sweep: No moving, fragments
» Copying: Better locality, worst utilization

« Compacting: Good locality, very slow



Tradeoffs

 Best strategy to use depends on program
* Every program is different...

» Instead, use multiple strategies

» Choose “intelligently” per object



Partitioning

Stack Heap

Partition Partition

TN




Paritioning

» Generally:
» Objects in partitions share some property
* Roots can point at any partition
 Cross-partition references allowed

» Partitions may hold dead cross-partition
references

« May be false for some partitioning style



Why partition?

« Usually: Use different GC schemes

« Often: GC only some partition(s) to reduce
GC pause time

« Sometimes: Different allocation schemes,
fragmentation avoidance, etc.

» Segregated blocks!



Elephant in the room

 #1 partitioning scheme is generational GC
» Generational = partition by age
« We'll get there, but others first



Mobility
« Moving objects reduces fragmentation

» Moving objects means references must
change: Burden on compiler to handle
references properly

« “"Normal” C code not so nice



Mobility

» Non-moving: Must have at least one
reference

* Java communicating with C;
« Keep a reference in Java's roots
* Give reference to C (GC unaware)
« When Cis done, discard Java root ref



Partitioning for mobility

Stack

Heap

Invisible
C stack
frame

Movable partition

“Pinned” partition




Partitioning for mobility

Stack

Heap

Movable partition

Invisible I l : l ]

C stack
frame

“Pinned” partition




Partitioning for mobility

Stack

Heap

C stack
frame

Invisible I l : l ]

Movable partition

Q

We don't
see this
reference!

“Pinned” partition




Partitioning for mobility

This reference
Stac .
keeps crucial

Heap

G object alive able partition

C stack
frame

Q

We don't
see this
reference!

“Pinned” partition




Partitioning for mobility

Stac This reference ean

keeps crucial

(3 object alive able partition “Pinned” partition

G | I

References
Invisit -~ which can :I ]

Csta nevergotoC

fra are movable

We don't
see this
reference!




Mobility necessities

» Must know all objects which might be
immobile (e.g. only certain types go to C)

 Assure visible root reference stays alive
* Immobile heap mark-and-sweep

* Must GC whole heap, not one partition



GC'ing with partitions

« Every GC strategy has a mark-like phase

 Collectively these are called “tracing”
 This phase broadly similar in each GC

« When scanning object, determine which
kind of tracing based on which partition



Partitioning algorithm sketch

trace () :
worklist := new Queue ()
(add roots to worklist)
while loc := worklist.pop():
obj := *loc
if obj is i1n M&S or compacting partition:
marked := mark (ob7j)
else 1f obj 1s 1n copying partition:
obj, marked := copy(ob7j)
if !marked:
(add obj’s references to worklist)

sweep () :
mandsSweep ()
compactingSweeps ()
16



Distinguishing partitions
 Partitions are separate sets of pools

« Pool remembers which partition it's in
(typically pool header)



Distinguishing partitions
 Partitions are separate sets of pools

« Pool remembers which partition it's in
(typically pool header)

“Pool mask”: OxFFFFO0O0O0
(0x0104B0OC8 & OxFFFFO0000) == 0x01040000

(struct Pool *) ((size t) p & POOL MASK)



Distinguishing partitions
 Partitions are separate sets of pools

« Pool remembers which partition it's in
(typically pool header)

Align pools to get nice pool mask

/

“Pool mask”: OxFFFFO0O0O0
(0x0104B0OC8 & OxFFFFO0O00) == 0x01040000

(struct Pool *) ((size t) p & POOL MASK)



Breather

 Partition to use best of multiple strategies

 Partitions just part of heap: References
from roots and other partitions

» Algorithm mixes by checking partition

 Partition by mobility for C



Partition by size

« Segregated blocks: Different pools for different
objectsizes, no fragmentation

« Copying: No fragmentation + improved locality,
must copy objects
« Mix them:
« Copy smallest objects
« M&S + segregated blocks for larger
« M&S + regular free-list for largest



Partitioning for size

Stack

Heap

Small obj. partition

=

Large obj. partition

M *

/

|




Partitioning for size

Stack Heap

Small obj. partition Large obj. partition

Want to avoid time taken
to copy big objects
L ‘ J




Partitioning for size

Stack

Heap

Small obj. partition Large obj. partition

Want to avoid time taken

to copy big objects
) ¥ 7

Locality less relevant to

D& big objects: Cache fits
only one anyway!

A J |




Partitioning for size

Stack

Heap

Small obj. partition

Large obj. partition

I

/

[

|




Partition by size

« Natural extension of segregated blocks
* One size per pool [copy pool(s) flexible]
» Too-large objects have own pool(s)

« No fragmentation except last pool(set)

« Other benetfits: Fast allocation, full-heap
sweep only on large objects (faster)



Partition by kind

 “Kind” may have many meanings:

« Type (e.g. language type annotations, mutability)

« GC-relevant category (e.g. references vs. no
references)

* Runtime properties (e.g. owner, trust, source)

- Memory properties (e.g. alignment,
executability)



Partitioning by executability

* JIT compilers generate code at runtime
« That code can die
 That code must be executable

. I}CAjaking whole heap executable is a very bad
iaea™

. Elace executable “objects” on own executable
eap



Partitioning by thread

» Threads cause problems:
» Allocation contention
 Stop-the-world (all threads must yield)

 Let's not even talk about reference counting

 Can partitioning by threads solve them?



Partitioning by thread

« Each thread gets own partition
 Collect just one thread!



Partitioning by thread

T1 stack

Heap

T2 stack

Thread #2 partition

R

> S

Thread #1 partition




Partitioning by thread

T1 stack

Heap

T2 stack

Thread #2 partition

\ "}

> S

Thread #1 partition




Partitioning by thread

T1 stack

Heap

Thread #2 partition

\ "}

T2 stack ’,

Can only scan own
thread’s roots:
Others may change

> S

Thread #1 partition

during scan!




Partitioning by thread

T1 stack Heap

Thread #2 partition Thread #1 partition

Don't follow pointers out
of partition: Not our job

T

T2 stack

Can only scan own
thread’s roots:
Others may change

during scan!



Partitioning by thread

T1 stack Heap

Thread #2 partition Thread #1 partition

Don't follow pointers out
of partition: Not our job

Can only scan own SR J/a,
thread’s roots: Our thread's objects could

Others may change be referenced or changed

T2 stack

during scan! by other threads!



Inter-thread madness

* Inter-thread links/modification causing
problems

 Write barriers to the rescue!

write (loc, obj):
i1f threadOf (loc) != threadOf (obj) or
threadOf (loc) !'= myThread() :
markAsInterthread (obj)
*loc := 0bj



Partitioning by thread

T1 stack

Heap

T2 stack

Thread #2 partition

X~
v

Thread #1 partition

'




Partitioning by thread

T1 stack

Heap

T2 stack

Thread #2 partition

\ "}

'

Thread #1 partition




Partitioning by thread

T1 stack

Heap

T2 stack

Thread #2 partition

R

'

Thread #1 partition




Partitioning by thread

T1 stack

Heap

T2 stack

Thread #2 partition

R

L

Thread #1 partition

'

Cannot be collected!




Inter-thread objects

* Inter-thread mark is a long-term mark

« Any object with inter-thread references
cannot be collected in partial GC

 Still need occasional full GC to collect
inter-thread objects

» Maybe move objects to other threads



Thread-local allocation

« Without thread partitioning, allocation
must lock

* Big lock, big contention!
« Partition per thread: No locking

» Partitioning by thread for allocation
worthwhile even without per-thread GC



When/what to GC

« With flat GC: When all pools full
« With partitioned GC: When a partition is full

« How to decide when to do a full GC?
« Depends on partitioning scheme...

« Threads: When large portion of objects are inter-
thread marked



Partitioning by age

 “Young"” partition and “old” partition
 Called “generations”

» Objects allocated in young partition
« Move to old partition if they survive

 Usually collect only young (most objects
die young)



Partitioning by age

« “Young"” partition and “old” partit’. 0(\
ect
- Called “generations” CQ\\
» Objects alloca* (‘Oa%ng partition
a2\ &0
* Move’ 'c\°“ i ation if they survive

(,e“e‘-y collect only young (most objects
Jale young)

36



